-

Your Ad Here
Your Ad Here

JOIN NOW

Friday, June 11, 2010

Software engineering is a profession dedicated to designing, implementing, and modifying software so that it is of higher quality, more affordable, maintainable, and faster to build. The term software engineering first appeared in the 1968 NATO Software Engineering Conference, and was meant to provoke thought regarding the perceived "software crisis" at the time. Since the field is still relatively young compared to its sister fields of engineering, there is still much debate around what software engineering actually is, and if it conforms to the classical definition of engineering. Some people argue that development of computer software is more art than science , and that attempting to impose engineering disciplines over a type of art is an exercise in futility because what represents good practice in the creation of software is not even defined. Others, such as Steve McConnell, argue that engineering's blend of art and science to achieve practical ends provides a useful model for software development. The IEEE Computer Society's Software Engineering Body of Knowledge defines "software engineering" as the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software, and the study of these approaches; that is, the application of engineering to software.

Software development, a much used and more generic term, does not necessarily subsume the engineering paradigm. Although it is questionable what impact it has had on actual software development over the last more than 40 years, the field's future looks bright according to Money Magazine and Salary.com, who rated "software engineering" as the best job in the United Statesin 2006.





When the first modern digital computers appeared in the early 1940s, the instructions to make them operate were wired into the machine. Practitioners quickly realized that this design was not flexible and came up with the "stored program architecture" or von Neumann architecture. Thus the first division between "hardware" and "software" began with abstraction being used to deal with the complexity of computing.

Programming languages started to appear in the 1950s and this was also another major step in abstraction. Major languages such as Fortran, ALGOL, and COBOL were released in the late 1950s to deal with scientific, algorithmic, and business problems respectively. E.W. Dijkstra wrote his seminal paper, "Go To Statement Considered Harmful", in 1968 and David Parnas introduced the key concept of modularity and information hiding in 1972 to help programmers deal with the ever increasing complexity of software systems. A software system for managing the hardware called an operating system was also introduced, most notably by Unix in 1969. In 1967, the Simula language introduced the object-oriented programming paradigm.

These advances in software were met with more advances in computer hardware. In the mid 1970s, the microcomputer was introduced, making it economical for hobbyists to obtain a computer and write software for it. This in turn led to the now famous Personal Computer (PC) and Microsoft Windows. The Software Development Life Cycle or SDLC was also starting to appear as a consensus for centralized construction of software in the mid 1980s. The late 1970s and early 1980s saw the introduction of several new Simula-inspired object-oriented programming languages, including Smalltalk, Objective-C, and C++.

Open-source software started to appear in the early 90s in the form of Linux and other software introducing the "bazaar" or decentralized style of constructing software. Then the World Wide Web and the popularization of the Internet hit in the mid 90s, changing the engineering of software once again. Distributed systems gained sway as a way to design systems, and the Java programming language was introduced with its own virtual machine as another step in abstraction. Programmers collaborated and wrote the Agile Manifesto, which favored more lightweight processes to create cheaper and more timely software.

The current definition of software engineering is still being debated by practitioners today as they struggle to come up with ways to produce software that is "cheaper, better, faster".


No comments:

Post a Comment

free counters